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Introduction
Colorectal cancer (CRC) is one of the primarily 
responsible causes for cancer-related deaths 
worldwide.1–3 If diagnosed in the early stage, the 
5-year survival rate after curative surgery reaches 
about 90%, dropping to only 14% with the 
appearance of distant metastasis.4 Multimodal 
treatment regimens combine surgery with neo-
adjuvant/adjuvant chemotherapy (CTx) tech-
niques as well as targeted therapies using 
antibodies and kinase inhibitors.5 This results in 
decided improvement of survival for metastatic 
disease patients reaching a median of nearly 
30 months.6

CRC liver metastases (CRLM) occur in 20–70% 
of CRC patients, and represent the major cause 
of death in this group.7,8 Surgical resection is the 
standard treatment for patients with resectable 
CRLM (when it is possible to achieve R0 resec-
tion while maintaining at least a 30% functional 
liver tissue) resulting in a 5-year survival rate of 
up to 58% when combined with CTx.9,10 
However, CRC cells are known to lose suscepti-
bility to CTx by various mechanisms.11,12 To 

optimize treatment strategies, further evaluation 
of promising drug combinations and additives is 
necessary for improve patient survival.

Melatonin (MLT), a natural body hormone, pre-
viously demonstrated impressive protective prop-
erties against toxic effects of CTx and 
radiotherapy, in both experimental and clinical 
studies.13–15 This could pave the way for applica-
tion of higher doses of CTx, resulting in improved 
efficacy.16 Moreover, MLT itself exerts antiprolif-
erative, antimetastatic, and cytotoxic effects on 
different types of human malignancies, including 
CRC.17–19 Taking into consideration that this 
endogenously generated molecule lacks any mod-
erate–severe side effects at even relatively high 
dose,20–22 currently renders MLT a trending 
research topic, particularly in cancer treatment 
studies (Figure 1).

The objective of this comprehensive review is to 
summarize literature on the role of MLT in CRC 
and CRLM treatment, and discuss the mecha-
nisms of its anti-cancer properties, based on 
experimental studies and clinical trials.
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Melatonin
The endogenous hormone MLT, also known as 
N-acetyl-5-methoxytryptamine, was discovered by 
the North American dermatologist, Aaron Lerner 
in 1958 at Yale University.23 For many years, 
MLT was considered to be synthesized exclusively 
in the pineal gland from the amino acid tryptophan 
in response to darkness (Figure 2).24–27 However, 
the presence of MLT-related enzymes was subse-
quently uncovered in a number of extrapineal tis-
sues such as the gastrointestinal tract, thymus, 
spleen, heart, muscle, and others.18,24,28 Moreover, 

MLT was also identified in most living organisms, 
including bacteria, macroalgae, plants, inverte-
brates, and mammals.29–31

In humans and mammals, two classes of plasma 
membrane associated MLT receptors are known. 
They are named MT1 (encoded by MTNR1A 
gene) and MT2 (encoded by the MTNR1B gene), 
respectively,32–34 and are expressed in various 
parts of the central nervous system and the periph-
eral organs.35,36 Another binding site for MLT, 
MT3, has been recently characterized as a 

Figure 1. History of PubMed publications regarding MLT and cancer.
Between 1981 and 2019, 539 papers have been published. Since 2009, there has been a steady increase in the number of 
publications. Data and graph were generated in PubMed by using the search terms [cancer(Title) AND melatonin(Title)].
MLT, melatonin.

Figure 2. The biosynthesis process of MLT.
MLT, melatonin.
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MLT-sensitive form of the quinone reductase 2.37 
It is related to the cell’s xenobiotic metabolism 
(detoxification enzyme) expressed in various tis-
sues.24,38 However, MT3 is an entirely different 
type of protein, not fully satisfying the criteria for 
MLT receptors.24 MLT also binds to cytoplasmic 
proteins, like the calcium-binding proteins calmo-
dulin or tubulin, as well as nuclear receptors like 
RORα/RZR, and acts through non-receptor-
mediated mechanisms.17,35

Soon after MLT was discovered to have a direct 
free radical scavenger effect, it was proposed as an 
anti-cancer agent.20 In 2004, MLT was shown to 
be associated with mechanisms influencing can-
cer initiation and cell growth for the first time.39 
Since then, numerous studies have supported 
these findings.17–19

Modes of action in anti-cancer treatment

Proliferation inhibition
MLT exerts a wide range of antiproliferative 
properties by inhibition/blocking of the cancer 
cell cycle under in vitro and in vivo conditions.40–42 
Activation of MT1 and MT2 receptors inhibits 
adenyl cyclase and cyclic adenosine monophos-
phate, leading to a reduction in uptake of linoleic 
acid, which serves as an energy source for tumor 
growth and tumor growth-signalling molecules.17 
MLT-induced inhibition of linoleic acid uptake is 
considered as antiproliferative mechanism, and 
was described by Blask et  al. in a rat hepatoma 
model.43 Furthermore, antiestrogenic effects,20 
and the ability to inhibit tumor growth by reduc-
ing glucose uptake and modifying the expression 
of the GLUT1 transporter have been shown in 
vitro and in vivo.44 In a study on a murine colon 
carcinoma-derived cell line, MLT inhibited 
tumor growth in a dose-dependent manner; DNA 
synthesis was inversely associated with MLT 
dose.45 Moreover, Lee et  al. demonstrated that 
physiological levels of MLT are able to modulate 
the expression of microRNAs in a non-metastatic 
breast cancer cell line, promoting antiproliferative 
properties.46 Recent studies found that these 
transcripts are dysregulated in many cancer enti-
ties, including CRC, and play an essential role in 
cancer-related signalling pathways.47–49

Apoptosis activation
Resistance to apoptosis is one of the funda-
mental hallmarks of cancer. There is strong 

evidence that MLT enhances and promotes 
apoptosis in various tumor cells.19,50–59 Jia-Yi 
Wei et  al. demonstrated that histone deacety-
lase 4 plays a crucial role in MLT-induced 
apoptosis in LoVo (a human colon adenocarci-
noma cell line) cells, most likely through the 
inactivation of calcium/calmodulin-dependent 
protein kinase (CaMK) IIα.19 More recently, 
Lee et al. showed that MLT influences apopto-
sis and autophagy in human colon cancer stem 
cells by regulating the cellular prion protein 
(PrPC)-octamer-binding transcription factor 
(Oct) 4 axis.53 Additionally, MLT acts via 
B-cell lymphoma 2 (Bcl-2) expression, the 
c-Jun N-terminal kinase, p38 and nuclear fac-
tor (NF)-κB-p65 signalling pathways, thereby 
promoting apoptosis in different types of 
cancer.51,54–59

Angiogenesis inhibition
As neovascularization is essential for tumor 
growth and metastasis, controlling angiogenesis 
is a promising treatment option for limiting 
cancer progression. Angiogenesis is regulated 
by factors like vascular endothelial growth fac-
tor or hypoxia induced factor (HIF),60 and 
MLT has the ability to regulate the oncogenic 
potential by controlling the expression of such 
factors.40,61 In vitro and in vivo (rodent models) 
studies demonstrated that MLT affects HIF-
1α, the most important and primary transcrip-
tional mediator in hypoxic response, in a 
receptor-independent manner.61 Previous find-
ings suggest that upregulation of microRNAs 
mediates MLT induced anti-angiogenic effects 
in breast and hypoxic prostate cancer cells in 
vitro.62,63 These findings have been approved in 
a xenograft model.63

Modulation of the immune system
The immune system presents the greatest poten-
tial for the specific destruction of malignant cells 
not harming normal tissue, and with the long-
term memory offering a potent opportunity to 
prevent cancer recurrence.64 The immuno-
enhancing action of MLT was evident in recent 
animal and clinical studies.17,65 MLT has been 
shown to contribute to effective anti-cancer 
immune responses via mechanisms such as stim-
ulation of interleukins (IL-2, IL-6, IL-12) pro-
duction, the inhibition of macrophage-mediated 
suppressive events, and inflammatory status 
modulation.66,67
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Antioxidative and pro-oxidative effects
MLT and its metabolites exert antioxidative 
effects. Besides direct scavenging of reactive 
oxygen and nitrogen species (ROS/RNS), MLT 
stimulates antioxidant enzymes, suppresses pro-
oxidant enzymes, and improves mitochondrial 
function, thereby reducing radical formation in 
physiological and pharmacological concentra-
tions.68–70 In vitro studies demonstrated a role of 
MLT in the maintenance of levels of the intra-
cellular antioxidant glutathione, which has been 
related to cancer cell growth.71 Elevated levels 
of ROS/RNS have been detected in almost all 
cancer entities, where they promote aspects of 
tumor development and progression.72 For 
example, the steady-state levels of superoxide 
are significantly higher (5- to 20-fold) in colon 
cancer cell lines compared with normal colon 
epithelial cells and fibroblasts.73 Interestingly, a 
few in vivo studies found that MLT induces the 
generation of ROS at pharmacological concen-
trations (μM to mM range) in tumor cells, lead-
ing to the assumption that MLT could be a 
conditional pro-oxidant.68 This property of 
MLT may promote an inflammatory response 
leading to apoptosis in tumor cells, but further 
in vivo studies are needed to concretize this 
scenario.

Effects of MLT on CRC
Epidemiological studies demonstrated that night-
shift workers might have an increased risk for can-
cer development, including CRC. This finding 
may support the hypothesis that environmental 
light inhibits MLT production, resulting in can-
cer promotion.74,75 In fact, many in vitro and in 
vivo studies have shown that MLT exerts anti-
cancer effects on CRC. Those studies are com-
piled in Tables 1 and 2, respectively.

The synergistic effect of MLT and anti-cancer 
drugs in CRC treatment
For several years, scientists searched for strategies 
to reduce the toxic side effects of CTx on the one 
hand, and to increase tumor-specific response on 
the other. Data on the synergistic effects of CTx 
agents and MLT on CRC suggest that MLT 
should be used in therapeutic concentrations 
rather than its physiological concentrations, 
which lack sufficient protection of cells from the 
toxic effects of CTx.99 So far, most of these stud-
ies were performed in vitro, lacking confirmation 
in vivo.

In vitro studies
In vitro studies evaluating MLT synergistic effects 
with anti-cancer drugs in CRC treatment are 
compiled in Table 3. It seems that addition of 
MLT increased the specific cytotoxicity of anti-
cancer drugs, including doxorubicin, irinotecan, 
cisplatin, oxaliplatin, and 5-fluoruracil (5-FU), on 
different CRC cell lines, including drug resistant 
cells.52,53,99–107 However, MLT was not effective in 
inducing DNA damage in healthy human cells. 
The main mechanisms suppressing tumor growth, 
proliferation, and tumor-mediated angiogenesis 
include (a) apoptosis activation through simulta-
neous modulation of cytochrome c/caspase, matrix 
metallopeptidase 9 (MMP9)/cyclooxygenase 2 
(COX-2), and p300/NF-κB signalling path-
ways107; (b) suppression of phosphatidylinositol 
3-kinase (PI3K)/protein kinase B (AKT) and 
nuclear factor kappa B (NF-κB)/inducible nitric 
oxide synthase (iNOS) signalling pathways101; and 
(c) and downregulation of PrPC.52,53

In vivo studies
There are a limited number of in vivo studies 
evaluating the synergistic effects of MLT com-
bined with anti-cancer drugs in CRC treatment 
(Table 4). Authors found that octreotide and 
MLT administered separately exert antiprolifera-
tive and proapoptotic effects on CRC in a murine 
model; however, combination of substances did 
not show additive effects.108 Recently, Bakalova 
et al. investigated the anticancer effect of MLT in 
combination with active irinotecan metabolites in 
a murine model of CRC.73 This combined treat-
ment reduced tumor volume by decreasing onco-
genic and increasing onco-suppressive ROS in 
tumor tissue. However, the small sample size of 
the study limits its explanatory power.

Clinical studies
The first controlled clinical trial to evaluate the 
effects of MLT on cancer was published in 1987 
by Lissoni et al.109 A total of 19 patients suffering 
from advanced solid tumors, including CRC, not 
responding to standard therapies, were included 
in the study. MLT was administered intramuscu-
larly at a daily dose of 20 mg, followed by a main-
tenance period with lower MLT doses in patients 
with remission, a stabilization of disease or an 
improvement in performance status. MLT 
induced an amelioration of the performance sta-
tus score and the quality of life in 60% patients. 
This preliminary study suggested a promising 
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effect of MLT in treatment of cancer patients not 
responding to standard anti-cancer therapies.109

In 1990, Barni et  al. evaluated the therapeutic 
activity of the pineal hormone MLT in patients 
with metastatic CRC who did not respond to 

5-FU treatment.110 MLT was administered intra-
muscularly at a daily dose of 20 mg for 2 months, 
followed by daily oral administration of 10 mg. 
An evident improvement in performance status 
was seen only in 5 out of 14 (36%) patients. The 
results indicated a lack of antitumor activity for 

Table 1. Summary of in vitro studies investigating the effects and mechanisms of MLT on CRC.

Authors Subject Dose of MLT Effect and mechanism

Pawlikowski 
et al.76

Colon 38 
cells

10–7 and  
10–9 M

Data support the hypothesis of the involvement of the RZR/RORα nuclear sites 
in the oncostatic action of MLT.

Farriol et al.45 CT-26 cells 1, 2 and 
3 mM

Decrease in cell growth was attributed to a moderate, but significant, 
antiproliferative action of MLT on this non-hormone-dependent cell line.

Winczyk et al.77 Colon 38 
cells

10–7 M The direct oncostatic effect of MLT depends on MT2 and RZR/RORα nuclear 
receptors activity.

Garcia-Navarro 
et al.78

HT-29 cells 10–3 M Reduction of nitric oxide production by cultured HT-29 cells seem to be 
directly dependent on the oncostatic properties of MLT.

Winczyk et al.79 Colon 38 
cells

10–7 and  
10–9 M

Membrane MLT receptors are not indispensable to the oncostatic action of 
MLT, and, thus, other pathways such as nuclear signalling and receptor-
independent mechanism may be also involved.

Park et al.80 HCT-116 
cells

1 mM MLT suppresses tumor angiogenesis by inhibiting HIF-1α stabilization under 
hypoxia.

Liu et al.81 HCT-15 
cells

1 nM MLT enhances DNA repair capacity probably by affecting genes involved in 
DNA damage responsive pathways.

Hong et al.42 HCT-116 
cells

10 μM MLT activates cell death programs and induces G1-phase arrest at the 
advanced phase.

Batista et al.82 Caco-2 
cells

1.56 and 
0.78 μg/ml

MLT promotes cytotoxicity in Caco-2 cells, which can probably be related to 
the generation of ROS.

Leon et al.83 Caco-2 and 
T84 cells

1 mM MLT reduces endothelin-1 expression and secretion in colon cancer cells 
through the inactivation of FoxO-1 and NF-κB.

Zou et al.84 RKO cells 25 μM MLT inhibits the migration of colon cancer cells by down-regulating myosin 
light chain kinase expression through cross-talk with p38 MAPK.

Wei et al.19 LoVo cells 1 mM MLT induces apoptosis of CRC cells through HDAC4 nuclear import mediated 
by CaMKIIα inactivation.

Buldak et al.85 HCT-116 
cells

10–6 M MLT treatment increases ROS levels and decreases cellular viability.

Liu et al.86 RKO cells 2.5 mM MLT inhibits colon cancer cell migration by downregulating Rho-associated 
protein kinase expression via the p38/MAPK signalling pathway.

Chovancova 
et al.87

DLD1 cells 0.1, 1, and 
10 μM

MLT is able to induce apoptosis in cancer cells through the type 1 sodium/
calcium exchanger, and type 1 IP3 receptor.

Yun et al.88 SNU-C5/
WT cells

1 mM MLT induces mitochondria-mediated cellular apoptosis in CRC cells via a 
PrPC-dependent pathway.

CaMK, calcium/calmodulin-dependent protein kinase; CRC, colorectal cancer; FoxO, forkhead transcription factors O; HDAC, histone deacetylase; 
HIF, hypoxia-inducible factor; IP3, inositol trisphosphate; MAPK, mitogen-activated protein kinase; MLT, melatonin; MT, melatonin receptor; PrPC, 
cellular prion protein; ROR, retinoid receptor-related orphan receptor; ROS, reactive oxygen species; RZR, retinoid Z receptor.
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MLT in metastatic CRC patients resistant to 
5-FU treatment.

Promising synergistic anti-cancer effects of MLT 
and IL-2 have been demonstrated in a study 
including 35 patients with various tumors, that is, 
CRC, gastric cancer, hepatocellular carcinoma, 
or pancreas adenocarcinoma.111 Oral administra-
tion of 50 mg MLT daily started 7 days prior to 
IL-2 administration, resulting in an overall 
response rate of 23%. Another study suggested 
that preoperative neuro-immunotherapeutic 
treatment with low-dose IL-2 and MLT (40 mg/
day) is a well-tolerated therapy, able to prevent 
surgery induced lymphocytopenia in cancer 
patients.112 A decline in lymphocyte number 
greater than 30% occurred in 8/10 control 
patients, but only in 1/10 treated with IL-2 and 
MLT.

A large clinical study in 2002 included 1440 
patients with untreatable advanced solid tumors 
(279 patients with CRC), receiving supportive care 
alone or supportive care in combination with MLT 
to investigate the effect of MLT on cancer.113 The 
second part of this study, evaluated the influence of 
MLT on the efficacy and toxicity of CTx in 200 
metastatic patients with CTx-resistant tumors (51 
patients with CRC). CTx regimen consisted of 
5-FU with folinic acid (FA) or raltitrexed. 
Additionally, MLT (20 mg/day) was administered 
orally during the night. The results led to the 
assumption that MLT may be effective in the pre-
vention of cancer progression-related symptoms, 
such as cachexia, asthenia, and lymphocytopenia, 
and CTx-induced toxicity, such as thrombocytope-
nia, asthenia, and neurocardiotoxicity. Moreover, 
the study revealed synergistic effects of MLT in 
combination with anti-cancer drugs.

Table 2. Summary of in vivo studies investigating the effects and mechanisms of MLT on CRC.

Authors Subject Dose of MLT Effect and mechanism

Anisimov 
et al.89–91

Rats 20 mg/l in water, PO; 
5 days/week 6 months

MLT demonstrated an inhibitory effect on DHM-induced intestinal 
carcinogenesis by preventing a decrease in numbers of MLT-containing 
cells. Moreover, multiplicity of colon cancer was reduced.

Pawlikowski 
et al.76

Mice 10 and 100 μg/animal, 
SC; 6 days

Data support the hypothesis of the involvement of the RZR/RORα nuclear 
sites in the oncostatic action of MLT.

Kossoy et al.92 Rats 20 mg/l in water, PO; 
5 days/week 6 months

Anti-carcinogenic effects of MLT are related to increased numbers of 
CD8+ lymphocytes and Fas-positive T cells.

Winczyk 
et al.93

Mice 10 and 100 μg/animal, 
SC; 6 days

Data suggest the involvement of RZR/RORα receptors in the pro-apoptotic 
effect of MLT.

Anisimov 
et al.94

Rats 1 μg/animal, SC; 5 days/
week 6 months*

Synthetic pineal peptide Epitalon showed an inhibitory effect on DMH-
induced colon carcinogenesis.

Winczyk 
et al.95

Mice 25 μg/animal, SC; 
10 days

Nuclear RZR/RORα receptors participate in the oncostatic action of MLT.

Winczyk 
et al.77

Mice 25 μg/animal, SC; 6 days The direct oncostatic effect of MLT depends on MT2 and RZR/RORα 
nuclear receptors activity.

Kossoy et al.96 Rats 1 μg/animal, SC; 5 days/
week 6 months*

Epitalon significantly inhibited mitotic activity of tumor cells in a model of 
DMH-induced carcinogenesis.

Kannen 
et al.97

Rats 10 mg/kg, IP; 14 days MLT potentially controls malignant lesions in colon tissue possibly by 
an early action on pericryptal colonic stroma changes, mainly upon the 
CD68(+) and CD133(+) cell clusters.

Trivedi et al.98 Mice 1 mg/kg, PO; 8 and 
18 weeks

MLT treatment decreased the progression of colitis-associated colon 
carcinogenesis by down regulating autophagy via the expression of 
Beclin-1, LC3B-II/LC3B-I ratio and p62.

*These studies used synthetic pineal peptide Epitalon.
CRC, colorectal cancer; DMH, dimethylhydrazine; LC, light chain; MLT, melatonin; MT, melatonin receptor; PO, per oral administration; ROR, 
retinoid receptor-related orphan receptor; RZR, retinoid Z receptor; SC, subcutaneous administration.
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Cerea et al. evaluated the influence of a concomi-
tant administration of MLT on irinotecan thera-
peutic activity in metastatic CRC.114 The study 
included 30 metastatic CRC patients progressing 
after at least one previous chemotherapeutic line 
containing 5-FU. After randomization, MLT was 
administered orally at 20 mg/day during the night. 
The percent of disease-control achieved in 
patients concomitantly treated with MLT was 

significantly higher than that observed in those 
treated with CTx alone, at 85.7% and 43.8%, 
respectively.

More recently, a study randomized 370 cancer 
patients to receive CTx treatment alone or CTx 
combined with orally administered MLT (20 mg/
day).14 CRC patients accounted for one-third of 
the study population (122 patients) treated by 

Table 3. Summary of in vitro studies investigating the synergistic effect of MLT combined with anti-cancer drugs in CRC treatment.

Authors Cell line Treatment Results

Granzotto 
et al.100

LoVo and 
LoVo/ADR

MLT (10–2000 pg/
mL)+Doxorubicin (0.3 
and 10 μM)

The cytotoxicity of doxorubicin on sensitive and resistant cell lines 
slightly increased by MLT.

Gonzalez-
Puga et al.104

HT-29 MLT 
(1 mM)+Lorglumide 
(25 μM)

MLT and cholecystokininA antagonists control human colon cancer cell 
growth in culture, and, in combined therapy, significantly increases 
their efficiency.

Wenzel et al.105 HT-29 MLT (1 mM)+Flavone 
(150 μM)

MLT potentiates flavone-induced apoptosis in human colon cancer 
cells by increasing the level of glycolytic end products.

Kontek et al.106 HT-29 MLT 
(50 μM)+Irinotecan 
(7.5, 15, 30, and 60 μM)

MLT modulates the genotoxic activity of irinotecan by degreasing DNA 
repair efficacy in cancer cells. However, not effective in inducing DNA 
damage in healthy human lymphocytes.

Wang et al.107 SW480; 
LoVo

MLT (1 mM)+Ursolic 
acid (20 μM)

Combined treatment significantly enhances inhibition of cancer 
cell proliferation and increases induction of apoptosis through 
simultaneous modulation of cytochrome c/caspase, MMP9/COX-2, and 
p300/NF-κB signalling pathways.

Gao et al.101 SW620; 
LoVo

MLT (1 mM)+5-
Fluorouracil (30 μM)

MLT synergizes the chemotherapeutic effect of 5-fluorouracil in colon 
cancer by suppressing PI3K/AKT and NF-κB/iNOS signalling pathways.

Pariente 
et al.102

HT-29 MLT (1 mM)+Cisplatin 
(20 μM);
MLT (1 mM)+5-
Fluorouracil (1 mM)

MLT enhances CTx-induced cytotoxicity and apoptosis via MT3 receptor 
stimulation.

Fic et al.99 LoVo; 
LoVoDX

MLT 
(1 mM)+Doxorubicin 
(0.9 μM)

MLT intensifies the cytotoxic effect of doxorubicin in LoVoDX cells (CRC 
cells resistant to doxorubicin).

Pariente 
et al.103

HT-29 MLT (1 mM)+Cisplatin 
(20 μM);
MLT (1 mM)+5-
Fluorouracil (1 mM)

MLT increases the sensitivity of HT-29 cells to 5-fluorouracil 
treatment.

Lee et al.53 S707 MLT (500 μM)+5-
Fluorouracil (1 μM)

Co-treatment with 5-fluorouracil and MLT inhibits the stem cell 
markers Oct4, Nanog, Sox2, and ALDH1A1 by downregulating PrPC 
resulting in suppressed tumor growth, proliferation and angiogenesis.

Lee et al.52 SNU-C5; 
SNU-C5/
Oxal-R

MLT 
(500 μM)+Oxaliplatin 
(1 μM)

Co-treatment with oxaliplatin and MLT increases endoplasmic 
reticulum stress and apoptosis of SNU-C5/Oxal-R (oxaliplatin-
resistant CRC cells) cells via inhibition of PrPC.

AKT, protein kinase B; ALDH, aldehyde dehydrogenase; COX, cyclooxygenase; CRC, colorectal cancer; CTx, chemotherapy; iNOS, inducible nitric 
oxide synthase; MLT, melatonin; MMP, matrix metallopeptidase; MT, melatonin receptor; NF, nuclear factor; Oct, octamer-binding transcription 
factor; PI3K, phosphatidylinositol 3-kinase; PrPC, cellular prion protein; Sox, Sex determining region Y-box.
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oxaliplatin plus 5-FU and FA, or 5-FU and FA or 
weekly irinotecan. The overall tumor regression 
rate was significantly higher, and 2-year survival 
was significantly improved in patients receiving 
CTx and MLT.

Clinical pharmacokinetics of MLT
Several administration regimens for MLT have 
been investigated, but it is not yet clear which regi-
men results in the optimal pharmacologic effect. A 
systematic review by Harpsoe et al., including 22 
studies with 359 volunteers/patients, provided 
important insights concerning the pharmacokinet-
ics of exogenously administered MLT.115 This 
review documented a time to maximal plasma/
serum concentration (Tmax) of approximately 
50 min following oral immediate-release formula-
tions of MLT. The half-life time of oral and intra-
venous MLT was about 45 min (ranging from 28 
to 126 min). Bioavailability after oral administra-
tion was generally low (ranging between 9 and 
33%) with significant intra-individual variability. It 
is proposed that the low bioavailability is caused by 
a considerable first-pass metabolism in the liver.116 
Another systematic review of experimental or clini-
cal studies investigated the pharmacokinetics of 
alternative administration regimen for MLT.117 In 
that review, intranasal administration demon-
strated a higher bioavailability and Tmax compared 
with oral MLT, 55–94% and ranging from 2.5 to 
7.8 min, respectively. Whereas the oral transmu-
cosal regimen resulted in higher maximal plasma/
serum concentrations with similar Tmax compared 
with oral MLT, transdermal administration of 
MLT yielded slow absorption and deposition of 
MLT in the skin. Since no side effects have been 
reported, MLT appears to be safe for daily doses 
up to 100 mg/kg.69,118 However, most of the stud-
ies included primarily young healthy volunteers, 
whereas previous studies indicated that the 

pharmacokinetics of MLT is affected by age, 
health status, and external factors, such as caffeine 
intake, cigarette smoking, and the use of oral 
contraceptives.22,119,120

Conclusion
The effects of MLT alone and in combination 
with anti-cancer regimen have been studied in 
vitro and in vivo including animal models and 
clinical trials. Clinical trials focus mainly on 
advanced cancer patients, but the best MLT 
administration regimen for CRC treatment is still 
unknown and needs further research. To deepen 
the knowledge about the effects of MLT in CRC 
treatment, animal experiments to evaluate clini-
cally important application regimen of MLT for 
treatment of complex CRC and CRLM are man-
datory. This will pave the way for further clinical 
studies probably answering the question about 
the optimal application regimen for MLT.

In summary, there is sufficient evidence that 
MLT is involved in carcinogenesis, development, 
and progression of CRC cells by different mecha-
nisms. Thus, further clinical trials are warranted 
to include MLT as a new promising therapeutic 
agent for CRC treatment.
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Table 4. Summary of in vivo studies investigating the synergistic effect of MLT combined with anti-cancer drugs in CRC treatment.

Authors Animals Treatment Results

Melen-Mucha 
et al.108

Mice MLT (10 μg/animal, SC)+Octreotide 
(10 μg/animal, SC); 6 days

Octreotide and MLT given separately exert antiproliferative 
and proapoptotic effects on colon cancer; no additive effects 
for the combined treatment.

Bakalova 
et al.73

Mice MLT (10 mg/kg, SC)+EF24 (400 μg/kg, 
SC)+SN38 (10 mg/kg, SC); 22 days

The anticancer effect of the triple combination is 
accompanied by decreasing oncogenic and increasing onco-
suppressive ROS.

CRC, colorectal cancer; EF24, curcumin analog; MLT, melatonin; ROS, reactive oxygen species SC, subcutaneous administration; SN38, irinotecan 
active metabolite.
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